
N90-20940

PERSPECTIVES ON THE USE OF

RULE-BASED CONTROL

David A. Handelman and Robert F. Stengel

Princeton University

Department of Mechanical b Aerospace Engineering
Princeton, New Jersey

Abstract. This paper addresses issues regarding the application of artificial intelli-

gence techniques to real-time control. Advantages associated with knowledge-based pro-

cramming are discussed. A proposed rule-based control technique is summarized and

applied to the problem of automated aircraft emergency procedure execution. Although

emergency procedures are by definition predominately procedural, their numerous evalua-

tion and decision points make a declarative representation of the knowledge they encode

highly attractive, resulting in an organized and easily maintained software hierarchy.

Simulation results demonstrate that real-time performance can be obtained using a

microprocessor-based controller. It is concluded that a rule-based control system design

approach may prove more useful than conventional methods under certain circumstances, and

that declarative rules with embedded procedural code provide a sound basis for the con-

struction of complex, yet economical, control systems.

Ke___ords. Aerospace control; artificial intelligence; real-time operation; programming

languages; hierarchical systems; man-machine systems; system failure and recovery.

IN'I'RODUCTION

The apparent success of knowledge-based systems,

such as expert systems, to provide a limited human-

like decision-making capability within a well-

defined problem domain gives strong support to their

use in the design and implementation of complex con-

trol systems [I-4]. Before knowledge-based control

techniques are'widely accepted, however, many ques-

tions regarding their utility must be addressed.

Why should a control system designer consider using

knowledge-based programming techniques? What dis-

tinguishes knowledge-based techniques from conven-

tional ones, how should various knowledge-based con-

trol ideas be evaluated and compared, which control

problems call for a knowledge-based solution, and

what specific benefits result from their use?

This paper attempts to answer some of these ques-

tions. The first section provides a comparison

between conventional and knowledge-based program-

ming, outlines some advantages associated with

knowledge-based systems, and identifies some of the

difficulties involved with applying these techniques
to time-critical control. The second sect Con summa-

rizes an on-going research effort in real-time

knowledge-based control designed to overcome these
difficulties. The third section illustrates the

utility of the proposed control technique by apply-

ing it to the problem of automated aircraft emergen-

cy procedure execution, and the final section summa-

rizes benefits associated with its use.

THE PROMISE OF KNOWLEDGE-BASED PROBLEM SOLVING

One way knowledge-based systems can be distinguished

from conventional software is by the manner in which

data and the routines used to manipulate data remain

separated within the program. As opposed to being

written in a procedural manner whereby syntactic

restrictions dictate an intermixing of code and

data, knowledge-based systems use declarative state-

ments, often in the form of rules, to declare and

associate pieces of data. As the system runs, modi-

fications and additions to the data are obtained

through the use of an inference engine. In this

Presented at the IFAC Workshop on

Artificial Intelligence in Real-Time Control,

Swansea, UK, September 1988.

case, the concept of data is generalized to mean

knowledge, and the inference engine acts on the

knowledge bas____e(previously recognized as the data

base) in hopes of inferring additional knowledge

from that which already exists. The solution to a

problem addressed by a knowledge-based system can

come in the form of the additional knowledge (or

information) inferred as a result of the system's

execution, as well as in the form of sequenced

actions performed as side effects of its execution.

The fundamental separation of a knowledge-based

system into inference engine and knowledge base
results in an enhanced capability for decision mak-

ing and subsequent problem solving. The value of

this enhancement, however, can mean different things

to different people. N%ile the user of a knowledge-

based system may be impressed by the performance of

the program itself, the designer of such a program

also will appreciate the convenient environment pro-

vided by the adoption of knowledge-based system

techniques. For example, although creation of an

effective and consistent knowledge base is the

toughest part of system construction, the mechanical

ease with which it can be prototyped, tested, and

modified (given the proper software and hardware

tools) reflects a significant increase in programmer

productivity in comparison to similar programming

efforts based on conventional methods [5,6]. The

benefits of using knowledge-based techniques, there-

fore, include not only what the resulting program
can do, but also the efficient manner in which such

a program may be created. It is within this context

-- increased programmer productivity as well as pro-

gram performance -- that the utility of knowledge-

based techniques should be evaluated.

Many factors complicate the use of knowledge-

based systems technology in control. Time-critics1

and numeric in nature, conventional control algor o

ithms exhibit computational characteristics radical-

ly different from those exhibited by knowledge-based

systems. The strength of knowledge-based systems

comes from a symbolic processing capability, i.e.,

the ability to reason with non-numeric data. Unfor-

tunately, symbolic computation facilities, in addi-

tion to being monetarily expensive, traditionally

195

196

result in slow execution speeds (in comparison to

numeric facilities) and weak support for the repre-

sentation and manipulation of floating-point numeric

data types. Under the assumption that knowledge-

based control efforts should build upon, and not

attempt to replace, existing effective numerical

control algorithms, a major challenge to control

system designers is to integrate efficiently symbol-

ic and numeric computation in a real-time environ-

ment.

Host control-oriented real-time knowledge-based

systems developed to date can be characterized by

(I) a separation within the control system of the

s)_bolic and numeric processing environments (soft-

ware and/or hardware), and (2) a supervisory role

for the knowledge-based system, usually involving

monitoring, diagnosis, and planning. Separation of

the symbolic and numeric processing environments is

Justified by the fact that specialized software and

hardware exist for this purpose. Moreover, as indi-

cated in Fig. l, sensing and control functions, con-

ventionally based on numerical algorithms, usually

are considered numeric processing tasks, whereas

more general control system information processing

usually is considered symbolic. Numeric processing

historically has demonstrated the capability for

high-bandwidth operation, whereas symbolic process-

ing typically has been associated with low-bandwidth

operation. Because sensing and control functions

impose strict time constraints on control system

design, separation of these high-bandwidth opera-

tions from the conventionally lower-bandwidth infor-

mation processing operations seems essential.

Although justified, the separation of symbolic

and numeric processing within a control system can

limit severely the interaction between processing

environments and the throughput of the system as a

whole [7,8]. In time-critical applications such as

fault-tolerant flight control, the throughput of a

knowledge-based control system must be high. The

present research goal is to integrate the desirable

attributes of procedural and declarative techniques

for efficient and effective control system program-

ming, combining convenience in design with speed,

economy, and high symbolic/numeric integration in

implementation.

Symbolic

TASK
PROCESSING

Numeric

Sensing & Information
Control Processing

TASK FUNCTION

(a)

High

TASK
BANDWIDTH

Low

..... desired
• "'''''''-- --.

typCai_,_

Numeric Symbolic

TASK PROCESSING

(b)

Fig. 1. Characteristic Relationship between Task Function,

Processing, and Banclwiclth

RULE-BASED CONTROL

Princeton Rule-Based Controller (PRBC) [9-11]

embodies a control technique whereby control actions

occur as a consequence of search through a knowledge

"base of parameters, rule_____s,and procedures. Parame-

ters, each with an assigned value, collectively rep-

resent a partial description of the "state of the

world" pertinent to a given control objective.

Search implies the attempt to increase the system's

knowledge of the world by inferring additional

parameter values, most of which are assumed unknown

when the search begins. Information expressing

relationships and dependencies between parameters is

contained in rules, each of which contains a premise

and an action. If a rule premise is true when test-

ed, its action is executed, possibly causing the

inference of additional parameter values. Rule

testing is guided by an inference engine.

Control actions occur as side effects of search.

Buried within the premises and actions of rules are

procedures (or calls to procedures) that invoke

time-critical control tasks that are best achieved

using proven analytical techniques. These proce-

dures are treated as building blocks upon which

higher-level control actions are built using rules.

Thus, in its simplest form, rule-based search con-

veniently implements deeply nested IF-THEN-ELSE

clauses. The resultant ability to perform complex

conditional branching in an organized manner pro-

vides a convenient mechanism with which to manipu-

late analytically derived numerical procedures. In

this scenario, it is not the end result of a search

that is important to control system operation but
the side effects of its execution.

Such use of rules for control results in a tight

functional integration between symbolic rules and

numerical' procedures. In this sense, the technique

addresses the desired movement of the curve repre-

sented in Fig. la by admitting symbolic processing

at the sensing and control level. Figure Ib, how-

ever, implies a concurrent desire to increase the

bandwidth of symbolic processing, thereby addressing

the issue of system throughput. The approach adopt-

ed here involves two distinct design phases. Phase

I involves the development of rules and procedures

in separate environments. LISP is used to create

and test rules, whereas Pascal is used to derive

procedures. Phase II involves final rule and proce-

dure debugging in an integrated Pascal implementa-

tion environment. Phase I utilizes a LISP-based

inference engine, whereas Phase II uses one based in

Pascal. The transition from Phase I to Phase II

involves the automatic translation of the LiSP-based

parameters, rules, and parameter-rule association

information into a form acceptable to the Pascal-

based inference engine. This knowledse base trans-

lation represents a form of automatic code optimiza-

tion, and results in a compile-ready program

implementing a search environment functionally simi-

lar to that based in LISP, but exhibiting the proven

real-time control system performance characteristics

of Pascal [12].

The advantages associated with an integrated Pas-

cal implementation environment are many. In addi-

tion to increasing search speed dramatically, knowl-

edge base translation allows rules and procedures to

communicate through common data structures. Because

parameters are implemented as Pascal variables,

their values can be inspected and modified easily by

procedures. Similarly, rules are free to access

variables other than knowledge base parameters, such

as the elements of a matrix routinely used by a

numerical procedure. Finally, additional integra-

tion results from the ability to place arbitrary

Pascal statements within the premises and actions of

rules. The search process can thereby invoke timely

pieces of Pascal code (calling a procedure, for

example) as easily as Pascal code can invoke the

process of search.

Althoughthesearchtechniqueutilizedherefor
control was inspired by that used in rule-based

expert systems, it differs significantly in both

implementation and intent. The use of rules in

expert systems often is influenced by the character-

istics of pure production systems. In production

systems, each rule is considered a distinct and mod-

ular piece of knowledge, with explicit dependence of

one rule on another being discouraged. Rules are

meant to communicate with other rules through the

indirect and limited link provided by the parameters

of the knowledge base, but the intentional calling

of one rule by another using parameter values as

messages is looked upon with disfavor. As Davis and

King [2] point out, "It is the premeditated nature

of such message passing (typically in an attempt to

'produce a system with a specified behavior') that

is the primary violation of the 'spirit' of produc-

tion system methodology."

Given that the goal of a control system is, in

fact, to produce a system with a specified behavior,

it is not surprising that some control system

designers view the application of pure production

system techniques to control to be misguided. It is
the intent of the rule-based control concept dis-

cussed here, however, not to take a pure production

system approach, but to utilize the declarative pow-

er of the production system formalism for its bene-

ficial effects. This effort may be summarized,

therefore, as the attainment of procedural activity

through the manipulation of declarative expressions,

which is not an entirely new idea [13]. The unique-

ness in this effort comes from its application to

the design and implementation of time-critical con-

trol systems, particularly flight control systems.

Although violating the spirit of pure production

systems in order to provide the specified behavior

demanded for control, the proposed control technique

retains many advantages related to production sys-

tems. Davis and King [2] provide an interesting

perspective related to program performance and pro-

grammer productivity as mentioned above.

Since it is possible to imagine coding

any given Turing machine in either pro-

cedural or production system terms, in

the formal sense their computational

power is equivalent. This suggests

that, given sufficient effort, they are

ultimately capable of solving the same

problems. The issues we wish to examine

ere not, however, questions of absolute

computational power but the impact of a

particular methodology on program struc-

ture, as well as of the relative ease or

difficulty with which certain capabili-

ties can be achieved.

The next section illustrates the straightforward

manner in which significant control system capabili-

ties may be obtained using rules.

DECLARATIVE EXECLTION OF AIRCRAFT E}_RGENCY

PROCEDURES

The rule-based control technique described above was

developed as part of a research program in applica-

tions of artificial intelligence theory to fault-

tolerant flight control [14]. Presently, the tech-

nique is being applied to the automation of aircraft

emergency procedures. Aircraft emergencies require

a quick response and relatively complex decision

making by a flight crew. Prescribed emergency pro-

cedures contained in the Pilot's Operating Handbook

are designed to guide the flight crew through the

decision-making process. Although these emergency

procedures are by definition predominately procedur-

al, their numerous evaluation and decision points

make a declarative representation of tht knowledge

they encode highly attractive.

Consider as a simple example the £ollowing

excerpt of an emergency procedure associated with

the electrical system of the CH-47C tandem-rotor

helicopter [15]:

4-96. FAILURE OF ONE AC GENERATOR.

4-97. Should one ac generator fail, the

remaining ac generator will assume the

entire load under normal conditions.

This condition will be noticed by the

illumination of a generator caution

light and by a zero indication on the ac

loadmeter for that generator. Attempt

to place the inoperative ac generator

into operation by performing the follow-

ing:

a. Master caution lights PUSH TO

RESET.

b. All circuit breakers - CHECK.

c. Generator switch - TEST, then

RESET, then ON. If the generator is

inoperative, move the generator switch

to OFF. (Move the generator switch to

TEST and observe the generator caution

light. If the caution light goes out,

the generator is delivering proper volt-

age and frequency and a short circuit on
a bus is indicated. If the caution

light remains on, the generator is inop-

erative.)

The following discussion highlights how this

emergency procedure (with reference to Generator

No.l only) can be made to execute automatically as a

side effect of search through a knowledge base of

parameters and rules. The inference engine executes

on the highest level a repetitive cycle involving

knowledge base initialization and goal-directed

search on a parameter named PROC_SEARCH_COHPLETED.

This is represented in Pascal as

repeat

initialize_knowledgebase;

determinevalue_of(PROCSEARCH_COHPLETED)

until false;

Knowledge base initialization assigns the value of

UNKNOWN to all parameters without a stored "initial

value". Goal-directed (backward-chaining) search on

parameter PROC SEARCH COHPLETED results in the

inference engine testing rules capable of supplying

a value for this parameter in their action, such as

the following.

[RDLE_PROC_I

[PREMISE

'($OR (SEQ PROC_REQUIRED 'FALSE)

($EQ PROC_STEP_CHECKED 'TRUE]

[ACTION

'($SETQ PROC_SEARCH_COHPLETED 'TRUE]]

Note that the premise of this rule depends on other

parameters whose values also are as yet unknown

(parameters receiving a value of UNKNOWN during

knowledge base initialization are written entirely

in capital letters). When tested, the premise first

searches for a value for parameter PROC_REQUIRED. A

value of FALSE implies that the emergency procedure

is not required (the conditions under which it is to

be executed do not exist). The following rules

determine whether or not procedure requirements are
met.

197

[RULE_PROC_REQ_I
[PREMISE
'($AN_ ($EQ Proc_Step O)

($EQ Gen_l_Control_Switch_Status '0_)

($EQ Gen 1Loadmeter Status O)

($EQ Gen-l-Caution_Light_ Status 'ON)

($EQ Gen_2_Caution_Light_ Status 'OFF]

[ACTION
'((SSETQ Proc_Step I)

(SSETQ PRoC_REQUIRED 'TRb_]]

[RULE_PROC_REQ_2

[PREHISE
'(SGT Proc_Step O)

[ACTION

'(SSETQ PROC_REQUIRED 'TRL_]]

[RULE_PROC REQ 3
[PREMISE

'($EQ Rule Tested 'TRL_]

[ACTION

'($SETQ PROC_REQUiRED 'FALSE]]

Rules are tested in order of appearance in the

knowledge base until a value for the specified

parameter is obtained. These three rules are tested

in order when a value for PROC_REQUIRED is needed

within the premise of RULE PROC 1. The premise of

the first rule holds if the-procedure is not already

executing (the active procedure step number, repre-

sented by parameter Proc_Step, is 0) and the condi-

tions specified by the remainder of the SAND clause

prevail. The second rule holds if the procedure is

already executing (Proc_Step is greater than 0), and

the third rule always holds whenever tested. Thus,

if during search only the third rule holds, then

PROC_REQUIRED obtains a value of FALSE, and
PROC SEARCH COMPLETED is assigned a value of TRUE

within the action of RULE PROC I quickly ending the

search cycle. However, if RULE_PROC_REQ_I holds,

then the step number is set to I, PROC REQUIRED

obtains a value of TRUE, the first subclause of

RULE PROC_I fails, and a goal-directed search for
PROC STEP CHECKED begins. A similar search will

prevail - if RULE_PROC REQ I fails, but

RULE_PROC_REQ_2 holds.

Emergency procedures are executed here as a
series of steps. Steps are executed one at a time,

in order. Each step in general involves an initial

action (invoked for Step I by parameter

PROC_STEP_I_STARTED), a time delay (reflected by

parameter Proc Step_Delay) over which the initial
action is allowed to take effect, and a final action

(invoked for Step 1 by parameter

PROC STEP_I_FINISHED). For example, an emergency

procedure may require the flipping of a switch and

the monitoring of its effect. The time delay

between the initial and final step actions gives the

physical system being probed a chance to react.
When a final step action is taken, Proc Step is

incremented, allowing the next emergency procedure

step to be performed.

Rules invoked by cyclic goal-directed search

effectively encode the logic required to execute

these emergency procedure steps with the appropriate

time delays. As shown by the rules above, cyclic

search on parameter PROC_SEARCH_COHPLETED results in

cyclic search on parameter PROC STEP CHECKED (assum-

ing that PROC REQUIRED is TRUE). -In effect, the

control system-continually asks the question, "Has

the appropriate emergency procedure step been

checked?" Rules capable of answering this question

for Step I are shown below.

[RULE_PROC_STEP_IA

[PREMISE

'(SAND ($EQ Proc_Step I)

(SEQ Proc_Step_Timer 'STOPPED)

(SEO PROC STEP TI_ER SET 'TRUE)

($EQ PROC_STEP_I_STARTED 'TRUE]]

[ACTION

'($SETQ PROC STEP CHECKED 'TRUE]]

[RULE_PROC_STEP_IB

[PREMISE

'(SAND

(SEQ

(SEQ
($OR

Proc_Step I)

ProclStep_Timer 'RUNNING)

[SAND

(SEQ PROC STEP I BYPASSED 'TRUE)

(SEQ PROC STEP TIMER SET 'TRUE]

(SEQ PROC_STEP_TIMEOVr-'FALSE]]

[ACTION

'(SSETQ PROC_STEP_CHECKED 'TRUE]]

[RULE_PROC_STEP_IC"

[PRE_HSE

'(SA_ (SEQ Proc_Step I)

(SEQ Proc_Step Timer

(SEQ PROC STEP TI_EOL_

'RLr_ING)
'TRUE)

(SEQ PROC STEP I FINISHED 'TRL_)

($EQ PROC_STEP_TIMER_SET 'TRL_]]

[ACTION

'(SSETQ PROC_STEP_CHECKED 'TRUE]]

When a value for PROC STEP_CHECKED is required by

RULE_PROC_I, these rules are tested. Each rule per-

forms a distinct intra-step function, monitoring the

"state" of Procedure Step I and quickly performing a

piece of the step if required. At least one rule

always holds. Within the first rule, the parameter

Proc_Step_Timer is checked for a value of STOPPED.

This indicates that the step has not begun, in which

case the timer is started (via search for parameter
PROC STEP_TIMER SET using rules not shown) and the
initial step action is taken (via search for parame-

ter PROC_STEP_I_STARTED). If the first rule fails
(Proc_Step_Timer is RUNNING), a search for parameter
PROC STEP 1 BYPASSED within the second rule checks

whether or-not the final step action already has

been performed by the flight crew. If it has,
PROC STEP 1 BYPASSED will return a value of TRUE and

a search on-PROC STEP TIMER SET will stop the timer

and increment Proc_Step. I{ PROC STEP_I_BYPASSED is
FALSE, the next premise subclause tests whether or

not the required step time delay has been achieved.

If PROC STEP TIMEOL_ is FALSE (inferred with a rule

not shown), _he rule premise holds without perform-

ing any emergency procedure actions. If

PROC_STEP TIMEOL7 is TRLZ, the third rule performs

the final step action (via search for parameter

PROC_STEP_I_FINISHED) and stops the timer and incre-

ments Proc_Step (via search for parameter

PROC_STEP_TIHER SET).

Thus, each search for parameter PROC STEP CHECKED

performs a single piece of a single procedure step.

Execution of the entire emergency procedure requires

many search cycles. The following three Step 1

rules encode the first part of the emergency proce-

dure excerpt shown above.

[RULE_PROC_STEP_I_ST

[PRE)IISE

'($AN_ (SEQ Advisory_Mode 'ON)
(SPASCAL "advise

('*** E)IERGENCY PROCEDL_E *_

Failure of One AC Generator:

a. Master caution light -

PUSH TO RESET');")

(SSETQ Proc_Step Delay 1.0]

[ACTION

'($SETQ PROC_STEP_I_STARTED 'TRL_]]

[RULE_PROC STEP_I_BY

[PREMISE

'(SEQ Master_Caution_Light_Status 'OFF]

[ACTION

'($SETQ PROC_STEP 1_BYPASSED 'TRUE]]

[RULE_PROCSTEP_I_FIN

[PREHISE
'(SAND

($EQ Operational_Mode 'ACTIVE)

(SSETQ Master_Caution_Light_Command 'PUSH]

[ACTION

'($SETQ PROC_STEP_I_FINISHED 'TRUE]]

198

mm

The premise of the first rule contains three sub-

clauses. The first sl_bclause holds if parameter

Advisory_Hode has value ON. If so, the next two

subclauses are evaluated. The $PASCAL subclause

contains embedded Pascal code that calls a procedure

which sends an advisory message to the cockpit for

evaluation by the flight crew. The 5SETQ subclause

assigns to parameter Proc_Step Delay a value of i.

Both of these subclause operators, as members of a

Boolean premise, always return TRb_. Similarly, the

premise of the third rule generates a master caution

light command within the $SETQ subclause if parame-

ter Operational_Hode has value ACTIVE. Thus, for

Procedure Step I, if Advisory_Mode is ON and Opera-

tiona! Hode is ACTI_, the control system will reset

the master caution light if after l sec this task

has not been performed by the flight crew. In gen-

eral, the parameter Advisory_Mode can have values ON

and OFF, and parameter Operational_Mode can have

values ACTI%_ and STANDBY. If Advisory_Mode is OFF,

no recommendations are sent to the flight crew, and

advisory delays are eliminated. If Operational Mode

is STANDBY, actions may be recommended but not exe-

cuted by the flight control system.

If any of these three rules fails, an additional

rule supplying an appropriate "default" value for

the required parameter is tested, such as the fol-

lowing.

[RULE PROC STEP 1 BY 0

{P_MISE-

'($EQ Rule Tested 'TRUE]

]ACTION

'(SSETQ PROC_STEP 1_BYPASSED 'FALSE]]

The remaining parts of the emergency procedure

excerpt given above are implemented in a similar

fashion. Consider the next three rules.

[RULE_PROC_STEP_2_ST

[PREMISE

($EQ Advisory_Mode 'ON)

($PASCAL "advise

('b. All circuit breakers - CHECK');")

($SETQ Proc_Step_Delay 2.0]

[ACTION

'($SETQ PROC STEP 2 STARTED 'TRU_]]

[RULE_PROC_STEP_2_BY

[PREMISE

'(sEoBREAKERS_CHECXEDBY FLIGHTCREW'TR_]
[ACTION

'($SETOPROC_STEP_2_BYPASSED'TRUE]]

[RULE_PROC_STEP_2_FIN

{PREMISE

'(SA_ (SEQ OPERATIONAL MODE 'ACTIVE)

(5EQ BREAk_RS_CH_CKED_BY_FCS 'TRUE]

]ACTION

'($SETQ PROC_STEP_2_FINISHED 'TRL_]]

The first rule provides an advisory with a 2 sec

grace period. Within this time period, a goal-

directed search on parameter

BREAKERS CHECKED BY FLIGHTCREW performed within the

second rule invokes additional rules that check if

all circuit breakers have been checked by the flight

crew. The third rule invokes other rules performing

this task automatically if and when necessary.

The last part of the emergency procedure is

implemented with two steps. Rules of Procedure Step

3 verify movement of the generator switch to the

TEST position. If Advisory_Mode is OFF, the control

system performs the action immediately. If Adviso-

ry_Mode is ON, a maximum advisory delay of I sec is

tolerated. Finally, rules of Procedure Step 4 wait

one more second (regardless of Advisory_Mode) before

moving the generator switch to ON or OFF, depending

on the status of the generator caution light.

The result of using a declarative rule-based rep-

resentation for emergency procedure execution is an

organized and easily maintained software hierarchy.

Additionally, by using cyclic search with "time-

sliced" procedure steps, the action of the control

system can be made to emulate a multi-tasking oper-

ating system. This capability is demonstrated

below.

Figure 2 shows a time history of the amount of

"effort" expended by a single-processor rule-based

con_roller executing the emergency procedure

described above. The data was obtained with the

Princeton Rule-Based Controller Development System

[9], employing a commercially-available single-board

computer outfitted with an 8-}_z 80286 processor and

an 8-_z 80287 math coprocessor. The controller

knowledge base contained 3& parameters and 3A rules.

Off-line LISP-to-Pascal knowledge base translation

required 8.6 min on a personal computer functionally

similar to the PRBC processor described above. Pas-

cal representation of the knowledge base required 16

KBytes of Random-Access Memory (some as code, some

as data), and the inference engine required 13

KBytes of code.

During simulation runs, certain parameters were

given a fixed initial value: Gen_l_Loadmeter_Status

was 0, Gen_2_Caution_Light_Status was OFF,

BREAKERS CHECKED BY FLIGHTCREW was FALSE,

BREAKERS CHECKED BY FCS was TRS_. Emergency proce-

dure execution was triggered by changing the value

of Gen_l_Caution_Light_Status from OFF to ON. Each

data point in the top plots of Fig. 2 corresponds to

the number of rules tested by the inference engine

during a goal-directed search cycle. Adjacent data

points are separated by the amount of time required

to complete a search cycle. Figure 2 shows zhat

although the value of the parameter Advisory_Hode

has a large effect on emergency procedure step tim-

ing (as intended), the inference engine consistently

executes search cycles at a very high rate.

Adviso./_Mode ON

25

_ 20
_" 15

-_o
a: 5

GLS

MLS

GSS

0 1 2 3 4 5 6

Time (sec)

Advisory_Mode OFF

25

20
P'15

_10
"5
a: 5

GLS

MLS

GSS

!

1

• | • I m ' '

2 3 4 5

lime (sac)

GLS - Gen_l_Caution_Light_Status
MLS = Master_Caution_Light_Status

GSS = Gen_l Control_Swilch_Status

Fig. 2. Execution of Single Emergency Procedure

199

Figure 3 shows a time history of rule testings

performed by the same rule-based controller concur-

rently executing five copies of the same emergency

procedure. Although all procedures trigger off the

same generator caution light, each manipulates its

own master caution light and generator switch, and

employs a unique set of step delays. Figure 3 shows

that this version of the rule-based controller, with

a knowledge base of 154 parameters and 170 rules,

still provides real-time multi-tasking performance

with a single economical processor.

CONCLUSIONS

The main conclusion to be dream is that a rule-based

control design approach may prove more useful than

conventional methods under certain circumstances,

especially when complex decision making is required.

The proposed rule-based control technique provides

basic programming constructs required in real-time

applications such as flight control. Capabilities

including event scheduling, selection, and synchron-

ization, as well as data passing and sharing, are

implemented in an extremely flexible and modular

representation. Consequently, declarative rules

with embedded procedural code provide a sound basis

for the construction of complex, yet economical,

control systems.

A_i__ModeON

• .o,°

...'_" .._
_ _ °_"

1_100

8O

_" 60

4O
"5
" 20

GLS

MLS1
GSS1

MLS2
GSS2

MLS3
GSS3

MLS4
GSS4

MLS5
GSS5

_100

oo_n_t

i i |

5 6
i i

1

i i i I I

2 3 4

_me (sec)

Advisory_Mode OFF

8O

_- 60

4O
"5
" 20

GLS

MLS1
GSS1

MLS2

GSS2

MLS3
GSS3

MLS4
GSS4

MLS5
GSS5

.o

---J

A

i I i

1

I i i i i i I i

2 3 4 5 6

_me (sec)

on
_t

GLS = Gen_l Caution_Light_Status
MLSn = Master_Caution_Light_Status for Procedure n

G$Sn = Gen_l_Control_Switch_Status for Procedure n

Fig. 3. Execution of Multiple Concurrent Emergency Procedures

ACKNOWLEDGMENT

This project was sponsored by the U. S. Army

Research Office under Contract No. DAAG29-84-K-0048.

REFERENCES

I. Barr, A., Cohen, P., and Feigenbaum, E., Th___ee

Handbook of Artificial Intelligence, William

Kaufmann, Los Altos, California, 1982.

2. Davis, R. and KInR) J. J. In Buchanan, B._

mld Shortl_rfe, E., Rule-Based Ex__pert

S_stem_: Th___e_e_CIN Experlments of the

Stanford Heuristic Programmfn B Pr__[_ec___t_t,

Addison-Wesley Puhltshin_ Company, Read|DR,

Mn_., 1984.

3. Hankins, W., Pennington, J., end Barker, L.,

"Decision-Haking and Problem-Solving Methods in

Automation Technology," NASA-TH-83216, May

1983.

4. James, J., "A Survey of Knowledge-Based Systems

for Computer-Aided Control System Design,"

Proc. 1987 American Control Conference, Minne-

apolis, June 1987.

5. Ricks, W., and Abbott, K., "Traditional Versus

Rule-Based Programming Techniques: Application

to the Control of Optional Flight Information,"

Applications of Artificial Intelligence V,

Proc. SPIE, Vol. 786, May 1987.

6. Hueschen, R., and HcManus, J., "Application of

AI Methods to Aircraft Guidance and Control,"

Proc. 1988 American Control Conference, Atlan-

ta, June 1988.

7. O'Reilly, C., and Cromarty, A., "'Fast' is not

'Real-Time': Designing Effective Real-Time AI

Systems," Applications of Artificial Intelli-

gence II, Proc. SPIE 548, 1985.

8. Birdwell, J., Cockett, J., and Gabriel, J.,

"Domains of Artificial Intelligence Relevant tO

Systems," Proc. 1986 American Control Confer-

ence, Seattle, June 1986.

9. Handelman, D., and Stengel, R., "An Architec-

ture for Real-Time Rule-Based Control," Proc.

1987 American Control Conference, Minneapolis,

June 1987.

I0. Handelman, D., and Stengel, R., "Combining

Expert System and Analytical Redundancy Con-

cepts for Fault-Tolerant Flight Control," AIAA

J. Guidance, Control, and Dvnamic__s, Vol. ll,

Jan-Feb, 1989.

11. Handelman, D., and Stengel, R., "Rule-Based

Mechanisms of Learning for Intelligent Adaptive

Flight Control," Proc. 1988 American Control

Conference, Atlanta, June 1988.

12. Westermeier, T., and Hansen, H., "The Use of

High Order Languages in Microprocessor-Based

Systems," Proc. 1984 American Control Confer-

ence, San Diego, June 1984.

13.

14.

15.

Munakata, T., "Procedurally Oriented Program-

ming Techniques in Prolog," IEE____EEEx___, Vol.

i, No. 2, Summer 1986.

Stengel, R., "Artificial Intelligence Theory

and Reconfigurable Control Systems," Department

of Mechanical and Aerospace Engineering Report

1664, Princeton University, Princeton, New Jer-

sey, June 1984.

"Operator's Manual: Army Model CH-47B and

CH-47C Helicopters," Army Technical Manual No.

55-1520-227-10, Aug. 1970.

20O

